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Supernovae Processes
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Type Il Supernova
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The Resulting Neutron Star

A NEUTRON STAR: SURFACE and INTERIOR
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What Determines Properties of a Neutron
Star?

* Nuclear Equation of 4"" .

State

— Determines:

e Maximum Mass
e Radius
e Surface Temperature

* Properties also
determined by
SUpernovae processes

Stellar Quakes." Stellar Quakes. NASA, n.d. Web



Nuclear Equation of State
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Different Models are

used
— Some Asy-Stiff
— Some Asy-Soft
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— Which one to use?

H. H. Wolter, Progress in Particle and Nuclear Physics 59.1 (2007)



Asy-Stiff vs. Asy-Soft

Stiff and Soft EoS give
different predicted
calculations for
maximum mass and
radius.

Also allows for different
supernova processes to
OCCUT,

S.E. Woosley, Proceeding of the International Astronomical Union, 125, 255 (1986)
M. Prakash, “The equation of state and neutron stars”, lecture note at the Winter School
on “The Equation of State of Nuclear Matter”, held in Puri, India, Jan 4-16, 1994.



Determination:

* Use multiple EoS to model neutron stars at
different densities



Goal:

* Have one EoS that can be used at low
densities and high densities but will still work
at saturation density as well.



Using Simulations

e Simulations allow for experimental setups to
planned and “perfected” before the
experiment is conducted.

— Saves money and time.

— Provides nearly “perfect” data that can be used to
compare to experimental data.



Forward Array Using Silicon Technology
(FAUST)

* Array of Silicon and

Cesium-lodide
detectors

* Purpose:

— Charged particle
detector for
multifragmentation

Downfall:

— Si detector too thick for
low energy, heavy ions
 No AE/E mass calculations
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Geant4 Simulation of FAUST

* Purpose:

— ToF Mass Identification
using alpha particles
and Zirconium-90 ions

* Benefit:
— Can be used to get AE/E

* Contains:

— Thin scintillator

— Thick scintillator
— Light guide






excited vibrational states

S / {excited rotational states not shown)

A= photon absorption

F =fluorescence {emission)
P = phosphorescence

5 = singlet state
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Getting Mass From ToF

1
E——mv

Kinetic Energy Equatlon\ v=- \ ZE

Velocity Equatlon - —
172

Mass Equation from KE Equation

1. Using a set distance, velocity (v) can be calculated using

the measured time.
2. With a calculated velocity and a set energy (E), the mass
of the particle can be calculated.



For energies: 10MeV, 12MeV, 14MeV, and 16MeV

ALPHA RESULTS
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Distance = 0.05 m
v=d/t

v=0.05m/(2.126E-9) s

m = 2E/v?

m = (2*¥*12MeV)/(2.126E-9s)? Mev/s?
m = 4.34E-14MeV/s? * 9E16 m?2/s?

m=3905.173 MeV

---Conversion---
931.494MeV/amu

m = 3905.173 MeV / 931.494 MeV/amu
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Mass (amu)
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Alphas May Be Too Light

Alpha Mass Calculations
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With energies: 200MeV, 300MeV, 400MeV, and 500MeV

ZIRCONIUM-90 RESULTS:
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Heavy Elements Provide Better Results

Zr-90 Mass Calculations
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For the Future:

* The timing resolution and ultimately the mass
resolution (from ToF) will be compared to that
of the current FAUST detectors.

 Other mass calculations, such as AE/E will be
compared as well.
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