Phoswich Array for Sub-Fermi Energy Heavy Ion Reaction Dynamics

Summer REU Program 2012 Brittany Abromeit August 3, 2012

Outline:

- Supernovae and the resulting neutron stars
- Nuclear Equation of State
- FAUST simulation using Geant4
- Results
- Conclusion

Supernovae Processes

Nave, Carl R. "Supernovae." Supernovae. HyperPhysics, n.d. Web

Type II Supernova

Supernova comes from Neutrino Energy Transport and is governed by Hydrodynamics

NASA, <u>ESA</u>, J. Hester and A. Loll (Arizona State University) Type II Supernova." *OPT Corp*. Oceanside Photo and Telescope, n.d. Web S.E. Woosley, Proceeding of the International Astronomical Union, **125**, 255 (1986)

The Resulting Neutron Star

- Structure is relatively unknown
 - Especially inner core
- Inner core especially important.
 - Only observable region of exotic matter and phase transition

What Determines Properties of a Neutron Star?

- Nuclear Equation of State
 - Determines:
 - Maximum Mass
 - Radius
 - Surface Temperature
- Properties also determined by supernovae processes

Nuclear Equation of State

$$\begin{split} E_B &= a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta(A,Z) \\ & E(\rho,I) = E(\rho) + E_{sym}(\rho) I^2 \end{split}$$

- Different Models are used
 - Some Asy-Stiff
 - Some Asy-Soft
 - Which one to use?

Asy-Stiff vs. Asy-Soft

- Stiff and Soft EoS give different predicted calculations for maximum mass and radius.
- Also allows for different supernova processes to occur.

S.E. Woosley, Proceeding of the International Astronomical Union, **125**, 255 (1986) M. Prakash, "The equation of state and neutron stars", lecture note at the Winter School on "The Equation of State of Nuclear Matter", held in Puri, India, Jan 4-16, 1994.

Determination:

• Use multiple EoS to model neutron stars at different densities

Goal:

 Have one EoS that can be used at low densities and high densities but will still work at saturation density as well.

Using Simulations

- Simulations allow for experimental setups to planned and "perfected" before the experiment is conducted.
 - Saves money and time.
 - Provides nearly "perfect" data that can be used to compare to experimental data.

Forward Array Using Silicon Technology (FAUST)

- Array of Silicon and Cesium-Iodide detectors
- Purpose:
 - Charged particle detector for multifragmentation
- Downfall:
 - Si detector too thick for low energy, heavy ions
 - No $\Delta E/E$ mass calculations

Geant4 Simulation of FAUST

- Purpose:
 - ToF Mass Identification using alpha particles and Zirconium-90 ions
- Benefit:
 - Can be used to get $\Delta E/E$
- Contains:
 - Thin scintillator
 - Thick scintillator
 - Light guide

- 1. Using a set distance, velocity (v) can be calculated using the measured time.
- 2. With a calculated velocity and a set energy (E), the mass of the particle can be calculated.

For energies: 10MeV, 12MeV, 14MeV, and 16MeV

ALPHA RESULTS

Alpha Particle 12 MeV

Distance = 0.05 m

Alphas May Be Too Light

Alpha Mass Calculations

Alpha ToF mass identification calculations close, but inconsistent

With energies: 200MeV, 300MeV, 400MeV, and 500MeV

ZIRCONIUM-90 RESULTS:

Zr-90 200 MeV

Zr-90 200 MeV

Heavy Elements Provide Better Results

Heavy elements see to obtain more accurate and consistent ToF Mass Identification calculations

Zr-90 Mass Calculations

For the Future:

- The timing resolution and ultimately the mass resolution (from ToF) will be compared to that of the current FAUST detectors.
- Other mass calculations, such as ΔE/E will be compared as well.

Acknowledgements:

 Special thanks to all the members in the SJY group, especially Paul Cammarata, for all the support and answers to all of my questions.

• Another thanks to Brian Roeder for help with the construction of my simulation.

BACKUP SLIDES

Total Thick Scintillator Timing

Total Thin Scintillator Timing

Thin Scintillator

